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Abstract. We show that a large class of two-dimensional pure three-spin statistical 
mechanical models can be analysed using a vector Coulomb gas. This can be done with 
the same methods previously applied to the 2D X Y  model and results of similar rigour 
obtained. The models considered here are generalisations of the Baxter-Wu model. with 
the Hamiltonian being given by a sum of three-spin interactions over a triangular lattice. 

1. Introduction 

A large class of 2D models, the so-called Z, or vector Potts models, are defined by 
the Hamiltonian 

Here V is a periodic function of 8 and ( i j )  label nearest-neighbour sites on a lattice. 
If Bi is defined continuously, we have the familiar XY model (Kosterlitz and Thouless 
1973), and if Bi = 2 m / p  takes on discrete values, given by n integer, the resultant 
model is called a p-state clock model or Z, model since the Hamiltonian is invariant 
under the symmetry operations corresponding to the cyclic group of order p .  Using 
the duality structure of this class of models, it is possible to show that for p > p c  (and 
for the Z, model p c  = 4) there is a ‘massless’ phase where correlations in the order 
parameter decay algebraically as a function of distance (Jose et a1 1977, Elitzur et a1 
1979). 

These models are by now thoroughly understood. The analysis relies heavily on 
renormalisation group ideas applied to a 2D Coulomb gas. The reader is referred to 
a seminal paper (JosC et ai 1977) for the background to this problem. By contrast, 
this paper considers an a priori very different type of model on a triangular lattice 
with a three-spin interaction instead of a two-spin interaction as in (1). 
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2. Model 

The simplest type of three-spin model is the Baxter-Wu model (Baxter and Wu 1973) 
on a triangular lattice. The Hamiltonian for this model is written in the form 

-PH = J  1 S(RjS(R')S(R") 
(R.R' .R' ' )  

where (R,  R ' ,  R") denotes all triplets ('plaquettes') on a triangular lattice, the spin 
S(Rj  = 11 and P is the reduced temperature. This model is easily seen to  be one of 
a class of models defined by 

We here define ( t )  to be all triplets (R,  R' ,  R") and = f3(R)+f?(R')+O(R").  The 
angles 6' are given by 6' = 27rn/p. For the Baxter-Wu model, p = 2 so that 6' = 0 or 
IT. Clearly, any value of p defines a model and in the limit of p =E, we have a 
three-spin generalisation of the X Y  model with a continuous symmetry. These models 
will be called the Z, x Z, or U( 1) x U(1) models depending on whether or not p is 
finite or infinite. The reason for this notation will become clear shortly. 

It has been shown (Alcaraz and Jacobs 1982a, bj that these models have a self-dual 
structure similar to that of the X Y  and clock models on the square lattice. Numerical 
Monte Carlo simulations suggest (Alcaraz and Jacobs 1982a, b) the existence of a 
massless phase for p 2 p c  where p c  = 5 .  In this paper, we will show that these models 
can be analysed using an analysis similar to that which has previously been applied 
to the X Y  model and clock models. In particular, we derive a Coulomb gas reformula- 
tion of the three-spin models using a duality transformation and analyse this using a 
renormalisation group approach analogous to that employed for the X Y  model (Koster- 
litz and Thouless 1973). With the Villain form (Villain 1975) for the interaction 
potential replacing the cosine in equation (31, these models are self-dual and correlation 
inequalities are proved in the appendix which show that for sufficiently large p ,  there 
must exist three phases as the temperature is raised from zero. The phase that exists 
for intermediate values of temperature is massless, i.e. there is no long-range order 
in the system, and correlations decay algebraically with distance. 

In order to gain some familiarity with the model defined by equation (3), we shall 
first explore some symmetries of this model. We first take 6' to be defined continuously 
on the interval 0 to 2 7  (i.e. p =m). The ground state has a U ( l j x U ( 1 )  symmetry, 
determined by two angles arbitrarily labelled $, and &(b. The ground state is shown 
in figure 1. The value of the angle @(R)  at each site is either Ga, & or -($a + &h) = 4, 
depending on which of the three sublattices a, b or c the site 'R' occupies. Thus there 
are two independent U(1) generators for the ground state configurations. 

We define the order parameter q ( R )  by 

W R )  = exp[ie(R)] (4) 

C2iR -R'j = (W?)V*(R' ) ) .  ( 5 )  

and the order parameter correlation function C2(R - R ' )  by 

Since the Hamiltonian is invariant under the replacement B(R) + H(R) + @ ( R )  where 
@(RI = @a, @h or ( - a a - - @ h )  depending on whether site 'R' is on sublattice a, b or c, 
the Mermin-Wagner theorem (Mermin and Wagner 1966) implies that fluctuations 
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Figure 1. The degenerate ground states of the three-spin model are shown. The spins 
on each of the sublattices a, b or c are defined by the angles $,, $b or (bC = - ($a+$b) .  

Since there is freedom to choose $a and $b, the ground state has a U(1) xU(1) symmetry. 

are large enough to cause Cz(R-R’)  to vanish for any finite separation at finite 
temperature if R and R’ are on different sublattices. In the case where 6(R) takes 
on p discrete values, we find a p 2  degenerate ground state. For the p = 2 Baxter-Wu 
model, this corresponds to the four-fold degenerate ground state shown in figures 
2(a )  and (6 ) .  (The two other ground states equivalent to that shown in 2(a) but 
translated by an elementary lattice vector are not shown.) 

The case p = 3 of our model corresponds to being on the ferromagnetic-antifer- 
romagnetic coexistence line of the model considered by Schick and Griffiths (1977). 
It has been established that the transition on this line is a first-order transition (Enting 
and Wu 1982, Saito 1982, Wu 1982), and this is consistent with the results that we 
shall present. 

(6) v- 1 v- 1 

A A n A A A 

Figure 2. ( a )  The singlet ground state of the p = 2 Baxter-Wu model is shown. ( 6 )  One 
of the three equivalent states in the triplet ground state of the Baxter-Wu model is shown. 
The other two are related to this by a translation by an elementary lattice vector. 

3. Gaussian approximation 

In order to obtain a more precise understanding of the model in equation (3) in the 
case p = a, let us consider the Gaussian model defined by 

-PH = 1 J 1 (e,)2 (6) 
(1 )  

where the sum ( t )  again is over all triplets of a triangular lattice. This approximates 
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equation (3) at low temperature for the cosine potential. We can write the angle 8(R)  
using a Fourier transform as 

where 
sketched in figure 3. We can then write the Hamiltonian as 

is the number of sites in the system. The sum is over the first Brillouin zone 

3 - p H = - - c l f 3 k 1 2 ( 6 + 4  J cos(k ‘E,,)). 

2 k  n = l  

Figure 3. The reciprocal lattice unit cell of the lattice of lattice constant ‘a’  is shown. 

The lattice vectors E,, are sketched in figure 4. The Gaussian Green function 
(l/J)gD(R -R‘)  = (e(R)e(R’))  is then easily calculated to be 

(10) 
d2k exp[ik ( R  -R’ ) ]  

[6+4 COS (k * E,,)] 

where U = J3a2/2 is the area of the unit cell in real space. The integrand has poles 

E7 EA 

Figure 4. There are six equivalent elementary lattice vectors of the triangular lattice 
labelled E ~ ,  . . . , E ~ .  With each site ‘ i ’ ,  there are associated six plaquettes. There is a 
minus sign associated with tn when n is odd and a plus sign when n is even. 
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whenever the equality 
3 

F ( k ) = 6 + 4  c c o s ( k * e , ) = O  
n = l  

is valid. This condition occurs in the six corners of the first Brillouin zone at the 
vectors generated by 30” rotations of the vector [47r/(3u),O]. But, because each 
corner is split between three zones, there are in fact only two poles per Brillouin 
zone. Expanding F ( k )  around these poles, one finds 

(12) 3 2 2  F ( k o + 6 ) = ? a  6 f . . .  

where ko  corresponds to any corner of the Brillouin zone. Since C2(R -R’)  is given 
in the Gaussian approximation as 

CAR --w = exp[(e(R)e(R’)) - ( e 2 ( ~ ) ) i  = exp[gD(R -R’) --gD(0)1 

the correlation function C2(R -R’)  is non-zero when gD(R -R‘)-gD(0) is finite. This 
occurs when the condition 

exp[iko (R - R‘)] = 1 (13) 

is valid. This is equivalent to the requirement that R and R‘ be on the same triangular 
sublattice. The C2(R - R ’ )  is given by 

(16) 

If R and R’ are not on the same sublattice, the result is zero. 
Using a similar analysis, we can calculate the three-point correlation 

C3(R1? R2, R3) = (exp{i[W1) + o w 2 )  + e ( ~ ~ ) l ) ) .  (17) 

This has a non-zero value only if the equality 

exp(iko R1)  + exp(iko - Rz)  +exp(iko * R3) = 0 (18) 

is valid. This is true if and only if R1, R2 and R3 belong to the three different 
sublattices. The condition has obvious analogues for higher-order correlation func- 
tions. 

4. Conversion to Coulomb gas and duality transformations 

Let us return to the original Hamiltonian, but instead of the cosine interaction in 
equation (3), we take the Villain potential. This is given by 
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The partition function can then be written as 

where 

Thus there are plaquette variables NI and site variables 8'(R). When 8(R) = 2 ~ n / p ,  
the theory is self-dual. As previously calculated (Alcaraz and Jacobs 1982b), the 
self-dual point is given by 

(22) l /Tc  = Pc = p / 2 ~ .  

A dual transformation can be made when p = CO. In this case we generate a Coulomb 
gas, and the rest of this section describes this calculation. 

Using the Poisson summation formula, the partition function 2 can be rewritten 
as 

where 

Note that we have defined 8, = 8(R) + 8(R') + 8(R") with R, R', R" defined by the 
triplet 1. Thus 8(R) is defined on sites of the triangular lattice, while there is a 
configurational sum over the CbI. The variables 4t and integers NI live on the plaquettes. 

The integral over can now be done to give 

where 

The integral over d8(R) can now be performed. This gives a delta function over the 
sum of all integers {Nf , }  such that the triplets tl surround the site R (see figure 3). 
Thus the partition function can be rewritten as 

We now define the variable T~ to be (+1) on 'up' triangles (A) on the lattice and to 
be (-1) on the 'down' triangles (V). This enables us to define a new integer-valued 
field M ( R )  associated with the site R on the original lattice by 

where R, label the sites surrounding the triplet ' t ' .  The integers Nt so defined satisfy 
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the delta function constraint in equation (27 )  so that the partition function can be 
rewritten without a constraint as 

Here again M, = M ( R )  + M ( R ’ ) + M ( R ‘ ’ )  where R, R’,  R” label the sites associated 
with the triplet t and an overall harmless constant has been dropped. Using the 
Poisson summation formula again, we can rewrite this as 

where 

and the variable is the sum over the three-site variables of the triplet ‘ r ’ :  

4r = 4 ( R )  + 4 (R‘ )  + 4 (R”) .  (32) 
Thus the original problem has been converted to an explicitly Gaussian model with 
integer ‘vortex’ charges N ( R ) .  These are the analogues of the vortex charges in the 
ordinary X Y  model and reflect the periodicity of the interactions in the original 
Hamiltonian. 

It might be of interest to draw a vortex configuration in this model. The vorticity 
is the sum of et around each vertex, counting each ‘down’ triangle with a minus sign 
and each ‘up’ triangle with a plus sign. The angle 8, is defined to be between -r and 
T.  When the spin configuration is a conventional plus vortex on sublattice ‘a’, a minus 
vortex on sublattice ‘b’ and nothing on lattice ‘c’, the vorticity in the triplet model is 
zero everywhere except at the point a in figure 5 .  This is therefore an elementary 
vortex configuration. 

e f F -  

Figure 5. The core region of a vortex centred at the point a on the a sublattice. This 
configuration is specified by ea = U ,  Ob = 4, Bc = -4, where 4 is the polar angle. 
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Using the results from 02, we can integrate over d ( R )  to find an interaction 
between the vortex charges N ( R ) :  

= T r  exp -(25~)’J N(R)N(R’)gD(R -R’ ) )  (33) ( (R,R’)  

where gD(R -RI) is given in equation (10) and each distinct pair (R,  R’ )  is counted 
once. The definition of the trace is 

T r = n (  2 ). 
R N ( R ) = - a ;  

Expanding about the poles of F ( k ) ,  we find the following expression for gD(R): 

The lattice sum P(R -I?’) is defined by 

(34) 

This sum is simply one if R and R‘ are on the same sublattice a, b or c and is -f 
otherwise. Thus g(R - R ’ )  defined by 

g(R - R ’ )  = gD(R - R ’ ) - P ( R  -R’)gD(O) (37) 

is finite. In order to incorporate this more elegantly and to gain some insight we 
define the vector charges m ( R )  by 

m ( R )  = N(R)&j  (38) 

are where j = 1, 2 or 3 respectively if R is on sublattice a, b or c. The vectors 
shown in figure 4. We can then rewrite the Hamiltonian as 

Use has been made of the fact that the dot product of the vectors e j  & k  is either 1 
or -f. Note that the last term is divergent unless the vector charge neutrality condition 

is valid. We have thus mapped our original problem exactly onto a vector Coulomb 
gas of the form studied by several authors (Nelson and Halperin 1979, Young 1979). 
This Coulomb gas lacks an angular coupling of the relative orientation of the separation 
vector and the vector charge. This model was discussed (Nelson 1978) as a special 
case of the model analysed by Young (1979). In the context of a replica calculation, 
this model was also analysed by Cardy and Ostlund (1982) and is related to the X Y  
model in a random symmetry breaking field. 

In order to make progress in the next section, it is useful to obtain the constant 
term ‘C’ in g(R -R’ ) :  

1 IR-R’I 
g(R - R ‘ ) - -  In (7) +c. 

4% 
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This constant can be approximately evaluated quite easily, since 

g(&r) gD(&r)++gD(O)=h(4 fl=l gD(&fl)+6gD(O))- 
3 

W a ,  6)  

It is easily seen that g(&,) = A, when this expression is used with equation (10). Hence 
the complete Hamiltonian in equation (39) can be rewritten as 

where y = exp(-r2J/3). 

5. Renormalisation group 

Having mapped our three-spin model into a Coulomb gas, we can take over the 
renormalisation group equations analysed by Nelson (1978) and Young (1979). We 
find that 

dJ/dl = -8J3rr3J2y2 ,  dy/d l=  (2 -2rrJ / JS )y  + 2 r y 2 .  (44a, b )  

We may also introduce a symmetry breaking field into the problem: 

-PH v J ( w  1 Vhp(e(R)). (45) 
I (R) 

When h, = CO, this Hamiltonian corresponds to the 2, x Z, model. By using the Poisson 
summation formula on the partition function defined by (45) we can rewrite the 
partition function as 

Thus the interaction between the dual charged fi(R) and the equivalent dual vector 
charges m(R)  is precisely of the form in equations (38)-(40) with fi(R) replacing 
N ( R ) ,  m(R)  replacing m ( R )  and (2.rrp)’/J replacing J .  Therefore we can identify 
the complete renormalisation group to lowest order in y and y, = exp(-h;’) as 

(47a 1 
(476 1 
(47c) 

dJ /d l=  2&rrp2 y :  - 8&ir3J2y ’, 

dyjdl = ( 2  - 2rJ j&)y  + 2rry2. 
dy,/dl = [ 2 - p 2 j ( 2 J 3 r J ) ] y ,  +2rry:, 

This form reduces to the correct renormalisation group equations when y = 0 and 
y, = 0, The renormalisation group flows for h, = 0 are shown in figure 6 .  When 
J < J3/rr, vortices are unbound and we have a paramagnetic phase. 

It is of interest to compute the critical value of J for the U1 X U1 Villain model. 
At infinite length scales, J then renormalises to &IT. In order to do this, we 
linearise the equations in the variable J.  Defining x = 2 - 21rJ/J3, and Y = 2 v y ,  we 
find 

dx ld l=  -12 Y 2 ,  dY/dl = x Y  f Y2. (48a, 6 )  
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T Y  

J 

Figure 6. The renormalisation group flows for the reduced fugacity variable Y = 2 n y  
against J are shown. The incident separatrix has slope -a ,  and the outgoing separatrix 
slope f. For starting points below the line AB, the renormalisation flows onto the axis 
Y = 0, corresponding to a Gaussian phase. Otherwise, flows to large Y occur, indicating 
the possibility of a paramagnetic phase. 

The solutions Y = mx exist for m = +$ or -4. The solution of -$  corresponds to the 
incident separatrix to the point y = 0, J = J3/.rr, so that we have the equation 

-a(2 -21rJ8lJ3) = 21r exp(-r2J;/3) (49) 

that gives an estimate for the critical value J; for the Villain U1 x U1 model. We can 
use the estimate for J: to estimate an upper bound for p so that for p > p c  the Z, x Z, 
model has a Gaussian phase. 

In the appendix we show inequalities (A14) and (A 20) which state that correlation 
functions of order (disorder) variables are weaker (stronger) in the U1 x U1 model 
than in the self-dual Z ,  x Z, discrete Villain model for a given value of the coupling 
constant J. Assume that the Z, x Z, Villain model has only two phases, so that the 
phase transition is given at the self-dual point: JsD = p/27r. Therefore, for J < JsD, 
the phase must be disordered. But if J > J8, inequality (A14) implies that the discrete 
Villain model must be ordered or massless. We therefore have a contradiction if 
p > p c  = 2rJ; .  The transition cannot then be given by the self-dual point, hence three 
phases must occur, the intermediate phase being ordered or massless. This intermedi- 
ate phase cannot be ordered because in this case the inequality (A20)  will be 
contradicted. If this intermediate phase is ordered the self-dual nature of the inter- 
mediate phase implies that the LHS of (A20) must be non-zero in this phase, but the 
RHS corresponds to the disordered high temperature phase of the model (29). Since 
this is zero, it contradicts the inequality. Using the value of J;-O.90 obtained by 
equation (49), we have proved that for p > p c =  27rJ8= 5.68 all discrete models will 
exhibit an intermediate massless phase between the high and low temperature phases. 

6. Phase diagrams 

When h, = O  we have the UlXU1 model; for J>JE there is a Gaussian-like low 
temperature massless phase with power law decay of correlation with distance accord- 
ing to equation (16). At the critical temperature, the correlation length diverges as 
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where 5 = 3 and the exponent 77 in C2(R)EIR1-" has the value 4. The value for Y is 
a consequence of the analysis of the renormalisation group equations by Young (1979), 
and we do not discuss the details here. 

When h, # 0, a phase diagram as shown in figures 7(a)-(c) results. We know from 
the renormalisation group that if p > 2&, the Gaussian phase extends away from 
the axis h, = 0. However, Monte Carlo results suggest that the Gaussian phase is 
absent for p < 5 in the Z, x Z, model, that corresponds to the limit h, = 03, whereas 
it seems to be present for p 3 5 .  This is also consistent with our estimate of p C s  5.7. 
Thus we believe that a global phase diagram as in figure 7(a)  for p 2 5 is likely. When 
p =4, we believe that a phase diagram as shown in figure 7(6) is likely, although it 
is conceivable that slow relaxation in the Monte Carlo calculation induced hysteresis 
for p = 4 and caused Alcaraz and Jacobs (1982a) to conclude that the Z4 x Z4 model 
did not have a massless phase. The validity of their conclusions is not contradicted 
by the estimate for p c .  

Finally for p = 2 or 3,  both the renormalisation group analysis and Monte Carlo 
calculations are consistent with the phase diagram shown in figure 7(c). 

0 a 

0 m 
h ,  

Acknowledgments 

Figure 7. The phase diagram that we believe to be 
likely for the U ( l ) x U ( l )  model with a p-fold sym- 
metry breaking field of strength h, is shown as a 
function of T = l/J. The vertical axis h, = 00 corres- 
ponds to the Z ,  x Z, model and h, = 0 corresponds 
to the U(1) x U(1) model that has a massless phase 
for T < To = l/Jg. There are three types of phases, 
an ordered p2-fold (LRO) degenerate phase, a 
Gaussian massless phase (G), and a paramagnetic 
phase (SRO). The points represented by x denote 
the-region that is Gaussian (massless). ( a )  p 3 6 .  (6)  
243 < p  < 5.7. For weak values of h, a Gaussian 
phase exists, whereas this phase is suppressed for 
sufficiently large values of h,. The line AB is prob- 
ably a line of first-order phase transitions. ( c )  p < 
243.  There is no Gaussian phase except on the 
line h, = 0. 
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Appendix 

This appendix shows that the correlations in the Z, x Z, Villain model are weaker 
than the correlations in the U(1)x W(1) Villain model for the same value of the 
coupling constant J.  This fact is used in the text to estimate p c  so that for p >pc the 
Z, x Z, Villain model has a massless phase. 

Let us consider the m-point correlation function for the Z x Z, model: 

C,(rl, r2 ,  . . . , r m )  = cos ( L T l  )> 
where e ( r )  = (2~/p)q(r)  (q(r) = 0, 1, . . . , p - 1) are Z,-variables. For the Vaillain 
potential this correlation function is given by 

c,” ( r l ,  r2, .  . . , r m )  

where 2,” is the partition function, 0, the triangular variable defined in equation (3) and 

(A3) 
m 

Q ( r ’ ) =  a r t , , .  
i = l  

By using the Poisson summation formula, we introduce an integer field I ,  defined 
on the triangles; then performing the @ ( r )  summation, we obtain 

in which s,[lT(r’) + Q ( r ’ ) ]  is a Kronecker delta modulo p ,  and lT(r’) is the sum of the 
I ,  variables that has r as a corner and 2: is the numerator with Q = 0. We can write 
the above expression in terms of a normal Kronecker delta by introducing an integer 
field m ( r )  defined on sites so that 

For the U(1) case we reach a similar result, only differing in that already in (A4) 
we obtain a normal Kronecker delta, thus 
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Following Elitzur et a1 (1979) we define the interpolating function 

with 2; being the same function of the denominator with Q = 0. This function has 
the desired properties that for H = 0 the m ( r )  field must be zero so that we obtain 
the correlation for the U(1) case; otherwise when H + 03 the m ( r )  field has a fugacity 
y equal to 1 so that we have the correlation for the Z, case. 

We want to show that for a given temperature, as we decrease H the correlation 
decreases; i.e. 

Taking the derivative of (A7) we have 

a 
- C a r l , .  . . , r,)  
aH 

We now make the following convenient change of variables in the triplet variables: 

Pt = It +I:, p :  = i t - l ;  

and in the site variables 

(AlOa, b )  

F ( r )  = m ( r )  + m’(r1, ,u’(r) = m ( r )  - m’(r) .  (AlOc, d )  

This transformation has the virtue of making symmetric the S -requirements in (A9) 

( A l l )  

However the new variables pr, p i  and ,u, F ’  are not independent; they must be 
even or odd simultaneously (ssme parity). We can make them independent if we 
multiply by the term 

SbT(r‘) + Q ( r )  +PP (r)lS[p:* ( r )  + Q ( r )  + p ~ ’ ( r ) l .  

We can expand the above product of triangles (lattice points) in terms of a general 
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subset of triangles T (of lattice points L); so that we finally obtain 

It is now clear that the quantity in brackets is positive so that (A8) is proved. This 
implies that at a given temperature 

We can also consider correlation functions of disorder variables 

with (2?r /p )4 ( r i ) ,  (0, 1, . . . , p - 1) being the dual Z, variable at the site ri. 

function 

~ g r i ,  r2, . . , r m )  

In a similar way to that in which (A7) was analysed we introduce the interpolating 

with 2; being a normalising constant and Q ( r )  as defined in (A3). As before, in the 
limit H + 0 (H -* 03) the field sr must be zero (assume whatever integer value) so that 
we have the correlation in the U(1) (Z,) case. 

Let us now consider the derivative 

a 
- D 2 r l , .  . . , r,) dH 
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We can symmetrise the above expression over prime and non-prime variables by 
replacing cos(2.n/N) E r  Q ( r ) 4 ( r )  by 

It is convenient to make the change of variables 

cL(r) = 4 ( r ) + 4 ’ ( r ) ,  
PI = s i  +s:, p :  =s1-sS:.  

c ~ ‘ ( r )  = 4 ( r )  - 4 ’ ( r ) ,  

Of course p, p ’  and F ,  c ~ ‘  are not independent, but we can restore their independence 
by adding a term like (A12). Then replacing the new variables, and expanding the 
term (A12) in terms of a subset of triangles ( T )  and sites, we obtain 

a 
- D $ r l , .  . . , r,)  
aH 

The term in brackets is clearly positive so that 

a D a r , ,  . . . , r , ) /aH s 0.  

D r h ,  . . . , r , )  c ~ u ( 1 ,  ( r l ,  . . . , r,,,). 

Hence 
v 
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